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Abstract—The problem studied in this paper concerns the analytical estimation of the effect of
microcracking on crack growth initiation in brittle solids. Particular attention is given to the
counteracting effects of toughness degradation and shielding by macrocracking. with a view to
determining the range of dominance of each mechamsm. Crack growth initiation by coalescence
with microcracks is studied with the aid of a cohesive zone model. The extent of shiclding of the crack
tip by the intervening microcracks is estimated under isotropic damage conditions. A comparison of
these effects reveals that. were the crack capable of growing within its plane, the toughness enhance-
ment derived from shielding would be almost exactly counterbalanced by the reduction of toughness
in the microcracked material. However, if microcrack deflection is taken into account levels of
toughening consistent with experimental data are computed.

I. INTRODUCTION

The problem studied in this paper concerns the analytical estimation of the effect of
microcracking on crack growth initiation in brittle solids. A growing body of observational
cevidence attributes a dual role to microcracking in relation to fracture of brittle materials
such as ceramics and rocks. On one hand microcracking ts thought to contribute to the
stability of macroscopic cracks by softening the material surrounding the tip, thereby
mitigating the effect of the applied loads([1, 2]. On the other hand, the microcracks created
ahead of the main crack can be gxpected to reduce the resistance to fracture of the material.
The next extent of toughening or embrittlement is the result of the counteracting effects of
shiclding and degradation.

For microcracking to provide effective shielding, it is critical that microcracks remain
stable following nucleation. In ceramics and rocks, this is accomplished by microcrucks
forming at grain boundary facets and remaining confined to them thereafter. Under increas-
ing loads the number of available nucleation sites is eventually exhausted and the material
asymptotically attains some reduced clastic moduli. The presence of softer material around
the crack tip has the effect of screening the remote loads, thereby reducing the level of stress.
Furthermore, newly formed microcracks partially relicve residual stresses that develop in
the material during cooling. This process manifests itsclf on the macroscopic scale as a
transformation strain[3, 4] and constitutes another source of toughening. Ultimately, the
crack advances by coalescence with microcracks ahead of the tip, a mechanism which is
promoted by profuse microcracking. Further microstructural background on microcrack
shielding and crack growth initiation can be found in Refs [5-7].

Earlier studies of this problem focused mainly on the toughening effect of microcrack-
ing[3. 8-12]. A principal objective of thesc analyses is to establish a relation between the
stress intensity factor at the crack tip K, and the amplitude K, of the surrounding K-field, or
“applied” stress intensity factor. The extent to which K, is reduced below K, provides a
quantitative measure of shiclding. A material which nucleates microcracks normal to the
direction of maximum tensile stress was considered in Ref. [12], where a closed form
expression for K,/K,, for a stationary crack was derived. The analysis given in Ref. [3] takes
transformation strains into consideration and was carried out for both stationary and
stcady growth conditions. A noteworthy outcome of this work is the obscrvation that
anisotropic microcracking screens the applied loads more cffectively than isotropic damage.
' By contrast. relatively little attention has been given to the problem of estimating the
inherent fracture toughness of a microcracked material. In this paper, a model is discussed
that seeks to describe, albeit approximately, the process of crack growth initiation by
coalescence with microcracks. The microcracks which weaken the material ahead of the
main crack are regarded as introducing a cohesive zone of the type originally proposed by
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Dugdale[13] and Barenblatt[14] for plane stress yielding. An effective cohesive stress-
opening displacement relation is obtained by means of a homogenization argument. In this
way, a number of results and methods from elastic-plastic fracture mechanics can be
brought to bear on the problem under consideration. In particular, the toughness of the
microfractured material can be determined as a function of the density of microcracks.

Some limitations of the present approach should be noted. The Dugdale zone technique
has been used in other similar studies. For instance, Budiansky[15] idealized the effect of
bridging particles in a ceramic material as a smeared cohestve zone. As in the present work,
the effective behavior of the bridging zone was determined by recourse to a homogenization
argument involving averages over large numbers of particles. However, one finds a posteriori
that the estimated size of the cohesive zone only includes a reduced number of bridging
particles. In spite of this limitation, the cohesive zone approximation does seem to capture
the relevant features of the bridging mechanism[15]. In the present case, it is also found
that strong interactions with the main crack are confined to the first few leading microcracks
during most of the separation process. However, as the moment of coalescence is neared, an
increasing number of microcracks appears to become involved. Thus, the homogenization
argument on which the present analysis is predicted may be expected to be most appropriate
at coalescence. i.e. at the moment of primary interest. Nevertheless, the localized nature of
the interactions points to a direct analytical treatment of a small number of microcracks as
a likely improvement over the present method. In addition to the above approximations,
the problem is idealized as being two-dimensional with the main crack growing self-similarly
by coalescence with slit cracks. Here again, simplifying assumptions of a similar nature
pervade most of the literature on both brittle and ductile crack growth. Thesc idealizations
may be expected to overestimate somewhat the extent of toughness degradation.

The remaining part of this paper aims at weighing the relative influence of shielding
and degradation on fracture toughness. To facilitate comparison of results we focus on
shiclding by isotropic damage, the pertinent features of which are given a succinct derivation
in Scction 3. The main result of this section is a closed form expression for K /K, which is
not restricted to dilute concentrations of microcracks. From these estimaltes it is possible
to derive some theoretical insight into the relative roles played by the various competing
micromechanisms, as discussed in Section 4.

2. WEAKENING EFFECT OF MICROCRACKS AHEAD OF A MAIN CRACK

In this section we concern ourselves with the problem of quantifying the deleterious
elfect of microcracking on fracture toughness. For cracks in the materials considered here,
extensive microcracking occurs within a certain zone surrounding the crack tip. The presence
of a microcracked region facilitates crack growth by coalescence with microcracks, thus
having a detrimental effect on fracture toughness. The characteristic length scale of this
process is furnished by the spacing between microcracks. This distance is typically of the
order of several grain sizes and will be herein assumed to be much smaller than the length
of the macrocrack. Under these conditions, the main crack can be regarded as being semi-
infinite, an idealization which is adopted throughout in the analysis that follows.

2.1. A cohesive zone model

To make the problem tractable, we resort to the following simplifying assumptions.
The weakening effect of microcracking is taken into account by considering a collinear
array of uniformly spaced microcracks lying within the plane of the main crack (Fig. 1(a)).
Collinear microcrack models have been used in the past to estimate the tensile strength of
ceramics[16-18]. The material surrounding the crack tip is treated as a lincar elastic body
endowed with the effective moduli of the homogenized continuum. For simplicity, these are
assumed to remain isotropic throughout the process of loading. In this paper, attention will
be confined to plane strain crack problems in which the remote loads are symmetric
with respect to the crack (Mode I). Under these conditions. the main crack and trailing
microcracks will open symmetrically and grow within their plane (Fig. 1(a)).
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Fig. 1. (a) Semi-infinite crack weakened by an array of microcracks. (b) Cohesive zone idealization.

To simplify the analysis further, the array of microcracks is modcelled as a cohesive
zone of the type introduced by Dugdale[13] and Barenblatt{14] (Fig. 1(b)). The traction-
opening displacement within the cohesive zone is determined by means of the following
homogenization argument. Consider an infinite array of uniformly spaced collinear micro-
cracks of equal length in an unbounded isotropic clastic body subjected to a remote
traction o (Fig. 2). An analytical solution to this problem has been given by Koiter[19]. A
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Fig. 2. Model problem for obtaining the effective properties of the cohesive zone.
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feature of the solution which bears directly on the problem at hand is the increase in strain
energy per microcrack, which is given by

W, = —

28121——v2l na ,
c £ 0g cos Tk ()

Here, 2! is the spacing between the microcracks, 2a is the size of the cracks and E and v are
Young's modulus and Poisson’s ratio of the material, respectively. Passage to the continuum
limit can be accomplished in the usual fashion. Consider an interval Ax in the plane of the
cracks. If Ax is much larger than /, the increase in strain energy due to the cracks within
the interval is given to a good approximation by

Ax L 1=y
AW =~ W,7’7= —a‘;—ELlogcos %IAX. 2)

Hence, the strain energy U per unit length of the plane of the cracks is computed to be
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The effective opening displacement 6 of the array of cracks is defined as the variable work
conjugate to g, i.c.
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This expression establishes a linear relation between the remote traction ¢ and the opening
displacement &. Introducing the stiffness & of the weakened plane as
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Note the strong dependence of & on the microcrack size (Fig. 3(a)). In particular, & is seen
to decrease to zero as the cracks coalesce, i.e. as @ approaches /.

The array of microcracks ahead of the main crack is now modelled as a cohesive zone
obeying pointwise the traction -displacement law expressed in eqn (4). In this context, [ is
presumed known and a/f, ¢ and § arc to be interpreted as the pointwise values of the
microcrack density, normal traction and opening displacement on the plane of the crack,
respectively. At points sufficiently distant from the crack tip the microcrack size is assumed
to be uniform and equal to a,. As the crack tip is approached, the microcrack size can be
expected to increase steadily. To determine the distribution of microcrack sizes within the
cohesive zone we postulate the microcrack growth criterion

Ki < Kic )
where K is the local stress intensity factor at the tip of the microcracks and K is the

toughness of the uncracked material. For an infinite array of collinear cracks, the value of
K, was computed by Rice[20] to be
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The dependence of K on the microcrack size is shown in Fig. 3(b). A noteworthy feature
of this dependence is that K grows unboundedly as the microcracks coalesce, i.e. asa — /.
Equations (4) and (8) combined suffice to determine the effective behavior of the

cohesive zone. For values of § in the interval
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K; remains below K| and the traction—displacement relation takes the linear form

)

(10)
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o= (1)

When threshold (9) is exceeded, microcracks grow in order to satisfy inequality (7).
Figure 4(a) shows the traction—displacement law obtained by assigning values to a4 in the
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interval [a,./). and the computing k& from eqn (6). 6 from eqn (8) with K; = K{ and
finally & from eqn (5). A striking feature of the equilibrium path is that it becomes unstable
at

K} e 8 1-v* Ki
0o % 04727 x — . 25092660, x=- 0 —1C (12)
Jan | . E J(nl)
This corresponds to a microcrack density
“—I‘ ~091. (13)

Beyond this point microcrack growth cannot be sustained statically at constant K. Opening
beyond J, results in cleavage of the ligaments between the microcracks. Although this
process is inherently dynamic, the transient response is herein ignored and the stress o is
assumed to drop instantaneously to zero following coalescence. The resulting traction-
displacement law is shown in Fig. 4(b). As can be seen. following an initial elastic range
(0, d,). a softening response is obtained in the interval (J,. J.), beyond which the microcracks
coalesce and the stress drops to zero. In the preceding discussion it has been tacitly assumed
that the initial microcrack density ay/l is below the critical value a./l. If the opposite is true,
the effective behavior is as shown in Fig. 4(c), i.c. the microcracked zone behaves linearly
up to coalescence, henceforth losing its bearing capacity.

2.2. Fracture toughness of the microcracked solid

By virtue of the above formulation, a number of results concerning cohesive zone
modecls can be brought to bear on the problem at hand. Of primary interest is to determine
conditions under which crack growth will initiate. Such conditions follow simply from an
application of the J-integral of Rice[20]. A classical result[20] shows that the path-
independent value of J is given by

Jl
J=J 6(d) do (14)

where 9, signifies the crack tip opening displacement (Fig. 1(b)) and ¢(0) is the effective
traction-displacement law depicted in Figs 4(b) and (c). Crack extension becomes possible
at loads large enough to elevate J to a value corresponding to §, = J, i.e.

ls&'

0

For the traction-displacement law derived above, one finds

l-v? o, (ma,
Jic = ‘E~(K|C) f(’z"l‘) (16)
where the dimensionless function f reads
4 sin 0
f(()) = }1.0876 — ;[O—MCt‘m (m)] amn

A derivation of this expression is given in Appendix A.
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Fig. 5. Reduction in inherent toughness of microcracked material as a function of microcrack size.

At large distances from the cohesive zone the deformation and stress fields can be
expected to be indiscernible from the elastic solution. Thus, computation of J from a
contour sufficiently removed from the crack tip yiclds the classical result

T—v"
Ji= K

(18)
where K, is the amplitude of the surrounding K-field. The toughness K- of the material can
be identificd with the value of A, which renders J, = Ji. The J-integral being path inde-
pendent, it follows from eqns (15) and (18) that

Kic _ [ Ry
=V 1

Surprisingly, Kj/ K is scen to be independent of the elastic properties of the material and
to depend solely on the microcrack density a,/l. This dependence is shown in Fig. 5, where
the detrimental effect of microcracking is clearly apparent. For values of a,/l < 0.08, the
effective toughness predicted by eqn (19) is greater than K. Thus, for small microcrack
densities crack growth by cleavage at Ky can be expected to prevail over microcrack
coualescence.

The size of the cohesive zone can be estimated from standard results, To this end, let
us approximate the traction-displacement law by a step function (Fig. 6(a)). The average
stress (o) displayed in Fig. 6(a) is chosen so as to match the area under the original traction -
displacement curve, ie. (o) = Ji/d.. Then, a classical computation[20] reveals that for a
material obeying the step function law the size R of the cohesive zone at crack growth
initiation is given by

n K _ /(EQ \
§1 Coy? = 0099/ 5 ) (20)

R P

i =
The dependence of R on the parameters involved is shown in Fig. 6(b). From this estimate
it may be concluded that strong interactions with the main crack are confined to the first
few leading microcracks during most of the separation process. However, as the moment
of coalescence is neared, an increasing number of microcracks appears to become involved.
Thus, the homogenization argument on which the present analysis is based may be expected
to be most accurate as coalescence is approached. Nevertheless, the localized nature of the
interactions points to a direct analytical treatment of a small number of microcracks as a
likely improvement over the present method.



Microcrack coalescence and macroscopic crack growth initiation in brittle solids 239

2.5

20 -

/-<°'>

U/(K?c/i/ ﬂl)
P
T

o
T

0.5

0.0 i 1 1 1
0.0 0.2 04 0.6 0.8 1.0

B8 1-v2 Koc
(8/1)/(,,——E -—‘—m)

(a)

L 1 1 1
0.0 0.2 0.4 0.6 0.8 1.0
(b) 0,/¢
Fig. 6. (1) Average cohesive stress used to estimate the size of the cohesive zone. (b) Size of cohesive
zone as a function of microcrack size.

3. MICROCRACK SHIELDING

In this section we turn our attention to the microcrack shiclding mechanism. We take
the viewpoint that both the size of the microcracks and their separation are small with
respect to the dimensions of the microcracked region. Under these conditions, a typical
material element can be regarded as containing numerous microcracks and the calculations
may be based on the effective behavior of the homogenized solid. We begin the section with
a brief discussion of some aspects of the mechanics of microcracked solids which have a
direct bearing on the problem under consideration. The simplifying assumption is made
that the solid remains ostensibly isotropic after microcracking. This supposition is intro-
duced with a view to facilitating comparisons with the results of the previous section, which
strongly rely on isotropy. An analysis of microcrack shiclding which accounts for induced
anisotropy is given in Ref. [12].

Of primary concern in formulating constitutive equations for the microcracked solid
is that they properly reduce to a deformation theory for monotonic stress paths. For
stationary cracks, the stresses at every material point can be reasonably expected to remain
nearly proportional if the loads are increased monotonically. Under these conditions and
provided that the aforementioned constitutive restriction is satisfied, the behavior of the
material becomes indistinguishable from that of a non-linear elastic solid and Rice's J-
integral applies. This permits one to compute the shielding ratio K,/K, in closed form for
arbitrary extents of damage.
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3.1. Incremenial isotropic damage

Under the simplifying assumption that the body remains isotropic at all times, the
state of microcracking can be characterized by means of a scalar internal variable q.
For instance. using a self-consistent method Budiansky and O'Connell[21] computed the
effective moduli of a solid containing randomly distributed circular microcracks to be

E 16 (1 —7v°)(10—3¥)

E- 4 2—v 1

G . 3201-9(5-9

¢='"Es oy ¢ @D
45 (v—7) (2—7¥)

g =

T 16 (1=v7) [10v— 7(1 + 3v)]

where £, G and v denote the effective Young's modulus, shear modulus and Poisson’s ratio,
respectively. Here ¢ provides a measure of microcrack density and is given by ¢ = N{r°),
where N is the number of microcracks per unit volume, r is the radius of the microcracks
and the angular brackets denote an average. The corresponding complementary energy of
the solid can be written as

Lip® s,

where p=ay,/3 is the hydrostatic pressure, s,; = a,;,—pd,; the stress deviator and
K = E/3(1 =2%) is the effective bulk modulus. The function x furnishes a Gibbs potential
for the strains in the sensce that

_ @9 (23)

b da,,

Guided by thesc results, we direct our attention to materials the Gibbs function y of
which exhibits an arbitrary dependence on the state variables (g, ¢), where ¢ denotes some
suitable damage paramcter. The corresponding stress—strain relation is still given by eqn
(23). To complete the description of the material, an equation of evolution needs to be
specified for ¢. If rate effects are neglected, this can be accomplished by postulating a
microcrack nucleation criterion. Here, we focus on criteria of the type

HQ(s,q9)) = 0:(q) (24)
where Fand Q. are scalar functions and

Ox(e.9)

Q= Ep (25)
is the thermodynamic force conjugate to ¢. From this viewpoint, @, can be regarded as a
critical value of @ for nucleation. The assumption implicit in eqn (25) is that the evolution
of ¢ depends on the state variables (g, ¢) only through the conjugate force Q(e, ¢). Arbitrary
as it may seem at this point, this postulate is critical for the J-integral formalism to apply,
as discussed in Scction 3.2.

Suitable loading-unloading conditions can be formulated in Kuhn-Tucker form as the
requirement that the constraints
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F(Q(e.9)—0:(9) €0, ¢20, [F(Q(e.9)—-Q:(9]lg=0 (26a—<)

be simultaneously satisfied at all times. Inequality (26a) embodies the nucleation criterion,
(26b) expresses the irreversibility of damage and (26¢) necessitates that eqn (24) be satisfied
whenever ¢ > 0 and that ¢ = 0 whenever F(Q(0,9))—0Q.(q9) < 0.

For this simple class of models the dependence of Q. on ¢ can be entirely determined
from the uniaxial stress—strain curve, a situation which is reminiscent of isotropic plasticity.
We illustrate this point for the simple case of potential (22). Let &(g) denote the stress—
strain law under monotonically increasing uniaxial tension. From the relation

o = E(q)e(o) 27

we can solve for ¢ as a function of g. On the other hand, particularizing definition (25) to
uniaxial conditions we obtain

q)c’

,
(q) =9

0=

N tru

i
2E%q)

Finally. combining eqns (27) and (28) and noting that the nucleation criterion (26) is
identically satisfied throughout the loading process we conclude that

E'(q)o*(@)
0uq) = F ( £ 'zq()" ) (29)

which expresses the sought dependence of Q. on the internal parameter ¢.

For the class of materials under consideration, the uniaxial stress-strain curve is taken
to be of the form shown in Fig. 7(a). The rationale behind this assumption is the following.
Below a critical stress @y, the clastic moduli can be expected to remain constant and equal
to the uncracked moduli, E,, v,. Beyond this threshold, microcracks are assumed to nucleate
at grain boundary facets where they arrest and remain stable thereafter. Thus, damage to
the material accumulates as a result of additional nucleation sites being activated and not
by extension of already existing microcracks. Consequently, as the fraction of nucleation
sites which are favorably oriented with respect to the loading axes is exhausted, a saturation
stage scts in, say at stress g,, beyond which the effective moduli £, and v, remain unchanged.
Eventually, microcracks start to coalesce and the present description ceases to be adequate.

The precise form of the transition range between o, and o, is immaterial to the present
analysis, as long as the nucleation criterion is of the form of eqn (24). By contrast, the
postulated existence of a saturation stage is strongly relied upon. Although the observational
evidence remains scarce, the assumption of a well-defined saturation state pervades most
previous work to date. A more realistic constitutive description allows for an offset strain
" in the saturated branch of the stress-strain law (Fig. 7(b)). The strain ¢" is due to release
of local residual stresses, and can be thought of as a transformation strain[3)]. There is no
difficulty in extending the above constitutive framework to take this effect into account.
However, in the context of crack growth initiation transformation strains may be reasonably
expected to play a negligible role. Thus, on one hand, their magnitude is estimated to be
relatively small in materials such as alumina[4]. Furthermore, transformation strains remain
bounded under increasing stress and are thus overwhelmed by the stress-proportional
part of the deformation as the crack tip is approached. In view of these observations,
transformation strains arc neglected throughout the calculations that follow. By way of
contrast, it should bc noted that transformation strains may be of considerable significance
in the context of steady crack growth.

3.2. Associated deformation theories
Next we seek to characterize the constitutive response predicted from the general
theory under monotonic loading conditions. For stress paths such that
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at all times, nucleation criterion (24) is identically satisfied and one can solve for g as a
function of . This yiclds a relation

q =g(o) (30
where the function g is determined from the condition
F[Q(o.9(0))] = Q.(g(a)). (32)

Substituting cqn (31) into egn (23) one obtains
c‘«.
by = é;“ (o.9(a)) = ¢, {a). (33)
1

Thus. under monotonic stressing in the sense of cqn (30) the constitutive responsc
is indistinguishable from that of a hypoelastic material with stress-strain relations &(g).
A question of primary importance for the applicability of the J-integral is to determine
sufficient conditions for &{¢) to derive from a potential, i.c.
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Qo)
(6) = 4
&,(0) 2o, (34)
for some Q(a). The integrability conditions for eqn (34) are
ce, (o) _Ceu(o)
éoy  Co; (33)
But from eqn (33) it follows that
G, Py, & a6

doy @o,;l6y G0, Cq loy

Thus, a necessary and sufficient condition for the existence of a potential is that the second
term on the right-hand side of eqn (36) be symmetric. This question can be decided with
the aid of eqn (32). Differentiating with respect to ¢ we obtain

(0Q ceefy_,.of
F(———-+—— )-cha;. (37

do, @q cay
Solving for ¢ f/¢e and substituting the result into eqn (36) we find

0, 0 N F o'y & 38)
don do,; 0oy (Qi—F'0Q/dq) do,;0q Cqloy

where use has been made of definition (25).

In view of the symmetry of eqn (38), we reach the conclusion that nucleation criteria
of the type expressed in cqn (24) result in constitutive behavior under monotonic loading
which is indiscernible from that of a non-lincar elastic material. We have also shown that
one can always construct an increndental model of damage such that:

(1) The elastic moduli or, more generally, the Gibbs function exhibit a prespecified
dependence on a damage parameter ¢ (e.g. eqns (21)).

(2) It exactly reproduces a prescribed uniaxial tension stress—strain curve (e.g. Fig.
T(2)).

(3) The monotonic stress-strain behavior derives from a potential. This fact is exploited
in the analysis that follows.

3.3. Crack-tip stress intensity fuctor
Now consider the asymptotic problem depicted in Fig. 8. It is assumed that the size of
the microcracked region is much smaller than the crack length and all other gcometrical
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Fig. 8. Small-scale microcracking problem for stationary crack.
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dimensions of the body. Under this small-scale damage condition, the crack can be idealized
as being semi-infinite. Furthermore, we confine our attention to Mode [ loading conditions
resulting in symmetric opening of the crack. Three regions can be identified surrounding
the crack tip (Fig. 8). In the innermost region the material can be assumed to be saturated.
The size of this zone is assumed to be large with respect to the dimensions of the microcracks
and their separation and. hence, the microcracked material can be treated as being homo-
geneous with uniform moduli £, and v,. In the outermost region the material is undamaged
and has moduli £, and v,. Between these two regions lies a transition zone in which the
material is partially microcracked.

For the class of materials under consideration the asymptotic stress field can be written
as

K
0,(r.0) = \/(zn;iail(e) (39

where (r. 0) is a set of polar coordinates centered at the tip (Fig. 8). K| is the near-tip stress
intensity factor and the angular field ¢,,(0) coincides with the well-known linear isotropic
elastic solution (see. e.g. Ref. [20]).

The asymptotic field (39) is assumed to be embedded in a surrounding K-field of the
same form but different amplitude K. This latter quantity embodics all information
concerning the remotely applicd loads as well as the finite geometry of the crack under
small-scale microcracking conditions. The ratio K/ K, is a mcasure of the extent of shiclding
of the crack tip by the intervening microcracks, and is the main outcome of the analysis.
Under the constitutive restrictions formulated in Section 3.2, the ratio K /K, follows readily
from an application of the J-integral of Rice[20]. For monotonically increasing K, the stress
path undergone by every material point can be expected to be neurly proportional. Under
these conditions the material becomes indiscernible from a non-lincar elastic material and
the J-integral formalism applies. From a remote contour lying entirely within the undam-
aged region the value of J is computed to be

1=vi
S, = K (40)

[

On the other hand, from a contour contained within the saturated region one finds

Jo=—2KZ (1)

By path independence one has J, = J, and hence

K, | —v} E,
LT ¥ [ et 2
K \/<l-v3 E) “2)

A similar argument has been used by Budiansky er al [22] to prove that transformation
toughening is not operative under stationary conditions. A result similar to eqn (33} has
been obtained in Ref. [23] under more stringent constitutive restrictions. In the present
context, relation (42) is independent of de'~ils in the transition from the uncracked to the
saturated states. Furthermore, it is not restricted to softening ratios E,/E, close to unity.
Unfortunately. the line of reasoning followed above does not carry over to growing cracks
since in this case it is no longer possible to assume monotonic stressing throughout the
body.
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Fig. 9. Reduction in crack tip stress intensity factor due to microcrack shielding.

Figure 9 shows the reduction in the stress intensity factor as a function of the softening
ratio E/E,. The value of (1 —v?)/(1 —v}) which is required in eqn (42) is obtained from
Budiansky and O'Connell's eqns (21) by sctting £ = E.. ¥ = v, and eliminating the density
parameter ¢. A substantial reduction in stress intensity factor due to microcracking is
apparent from Fig. 9. Values of ¢ of about 0.3 at the crack tip have been observed
experimentally[24]. corresponding to a 30% reduction in K|. Also in this figure are the
results due to Hutchinson(3] for dilute distributions of microcracks and by Ortiz[12] for
microcracking normal to the maximum tensile direction. As expected, Hutchinson’s first-
order formulas agree closely with the results for fully damaged conditions in the limit of
small softening ratios E/E,. Furthcrmore, microcracking normal to the direction of
maximum tension is seen to shield the crack tip more effectively than random microcracking,
as pointed out by Hutchinson[3).

4. SHIELDING/DAMAGE TRADE-OFF

Two effects of microcracking on fracture toughness have been approximately quantified
in previous sections. One weakens the resistance of the material to crack growth while
the other delays the onset of mucroscopic crack propagation. A question of primary
importance is to determine the range of dominance of each effect and under what conditions
net toughening is realized. We start by recalling that the size of the cohesive zone within
which microcrack coalescence occurs is of the order of a few microcrack lengths and much
smaller than the saturated region. Thus, the results derived in Section 2 apply with moduli
E and v given by E, and v,. In particular, it follows that crack growth initiates when

Kx KIC

O = 0
IC KIC

(43)

where K¢/ K is given by eqn (19). In terms of the remotely applied stress intensity factor,
condition (43) becomces

K., K, K. Ko Kc KT
= e = Rv (44)

where K,/ K, is given by eqn (42). Thus, eqn (44) characterizes the effective overall toughness
KT of the material as the product of two terms. The first one, K./K, = 1, represents the
gains derived from shielding, while the second, Kic/K < | quantifies the losses due to
material degradation.
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Fig. 10. (2} Comparison of toughness gains and losses due to shiclding and material degradation
as a function of saturation microcrack density. (b) Net toughening as a function of saturation
microcrack density for planar and deflected crack growth.

To make eqn (44) meaningful, it is necessary to establish a relation between the linear
microcrack density a,/l on the plane of the crack and the volumetric microcrack density ¢,
in the saturated zone. This problem is studied in Appendix B, where the particularly simple
relation

Uy

= g, (45)

is obtained for planar crack growth. Using this result it is possible to superimpose Figs 5
and 9 and weigh the relative effects of shielding and toughness degradation. The result of
this operation is shown in Fig. 10(a), where curves A and B depict the shielding ratio K/K,
and toughness reduction Ky/K{e as a function of ¢,. respectively. The latter dependence is
obtained by combining eqns (45) and (19). For a given value of g,. the dominant mechanism
can be readily identified as that corresponding to the uppermost curve.

The most salient feature of this comparison is the fact that, under the assumptions of
the present analysis, shiclding and toughness degradation seem to counterbalance each
other almost exactly. The net toughening of the material is shown in Fig. 10(b) and is seen
to be negligible. The balance between both micromechanisms is likely to persist, albeit
slightly more favorable to shielding, if the effect of induced anisotropy is taken into account.
These observations suggest that other toughening mechanisms need to operate concurrently
with microcrack shielding for the experimentally observed toughness enhancement to be
obtained. A prime candidate is crack deflection, a mechanism which has not been taken
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into account in the analysis given in Section 2. For the materials under consideration,
fracture is primarily intergranular[24-28] and the fractured surface exhibits considerable
roughness. This has the effect of increasing the area to be cleaved per unit distance advanced
by the crack. thus adding to the effective toughness of the material. This feature can be
built into the model by suitably modifying the relation between the linear microcrack
density a,/! and the volumetric crack density g,, as discussed in Appendix B. The resulting
shielding/damage trade-off is shown in Fig. 10(a) and the net toughness enhancement in
Fig. 10(b). For physically realistic values of the amplitude of the asperities in the cracked
surface (e.g. A/L = 0.25, eqn (B1)). the extent of toughening is increased by as much as
25% with respect to planar growth. A further beneficial effect of crack deflection is to
reduce the effective stress intensity factor acting on the microcracks lying ahead of the main
crack. However, the estimates derived by Suresh{29] show that this is a small effect for
monolithic ceramics under monotonic loading. with toughness gains of the order of 5%.
These factors combined suffice to raise the estimated toughness to levels consistent with the
experimental data (see, e.g. Ref. [30]).

The results shown in Fig, 10(b) provide some insight into the effect of grain size on
fracture toughness. The propensity for microcracking exhibited by a material appears to
be strongly dependent on the grain size[7, 30-32]. Specifically, larger grained maternials are
observed to be more prone to microfracture than fine grained ones. Thus, the saturation
microcrack density ¢, can be expected to be a monotonically increasing function of the
grain size. Under these conditions, materials with sufficiently small grain sizes will exhibit
valucs of the saturation density ¢, < ¢, (Fig. 10(b)) for which microcracking results in net
toughening. For coarse grained materials the situation is reversed and net embrittiement
becomes the likely outcome of microcracking. These qualitative observations arce in agree-
ment with the experimental evidence available to date (sce, e.g. Ref. [30]).
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APPENDIX A. J,. FOR A MICROCRACKED SOLID
Lquation (15) can be expressed as
3

Jio = 5(1,,5“+J' “a(d) do. (AD)
sl

At this point it proves convenient to rephrase the integral in eqn (Al) in terms of the microcrack density afl.
Using eqns (4) and (8) with K, = K. we find

% 1-v? 8 [*
J: 6(d) do = & (K{{-)’n2I a(0)5'(0) do (A2)

o n

where one has

ERES]

-

in terms of the normalized variables

R
tan U). 5(0) = —log (cos ())/\/(i tan U) (A3)

d=oJ(nl)Kie, §=0/x, 0=na/d, 2=

(Ad)

In eqn (A2), the upper limit of integration is given by 0, = ra /2! = 1.4295. The normalized integral in eqn (A2)
reduces to

% [ " 6(0)5(0) d0 = ; J; ‘(1 4 108 (cos 0)) ) (AS)

9 ?
N 2sin* O

which is readily computed to be

3 ("% log (cos () 4 log (cos 0) sin0 \[*
- e =0~ —— i e . A6
n[ (l M 2sin® 0 a0 n ¢ 2tand arctan cos O+ 1 (A6)

1 iy

Combination of the above equations results in eqn (16). with
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4 log (cos 6.) sin 6,
§(60) = ;[9=‘ Zand, AU \cos 6,41

i [ rctan sin 6, (7
x| foTAe cos By +1/ |

Finally, substituting into (A7) the numerical value of 8, one obtains the sought result. eqn (17).

APPENDIX B. GEOMETRICAL ESTIMATES OF ¢ AND a/l

Here we concern ourselves with the problem of establishing a correspondence between the volumetric
microcrack density ¢ = N{r*) and the linear density @ / on the plane of the main crack. In the materials considered
here, fracture is predominantly intergranular{20-24} and the growing crack follows a meandering path. For
stmplicity, we idealize the deflections w of the fractured surface as exhibiting a doubly sinusoidal profile

) Yy
w(x,¥) = A sin ? sin % (BD)

where A and L are the amplitude and period of the tilts, x is the direction of advance of the crack and y the
direction of the crack front. The area of the fractured surface per unit area measured on its mean plane is given

by
v P{e (" . 2nd\ J2rx . 2ry L 2re L 2my )R dxd B2
o = —— ]| cos* — - sin® —= 4s§in° — COS§T =i xdy. 2
=)L L Cos I sin L +sin i cos I v dy (B2)

For small amplitudes, this expression is well approximated by

s<1e(™ B3
S x4+ L . ( )

For the physically realistic value A/L ~ 0.25, the above expression predicts a 60% increase in the area of the
fractured surface with respect to planar growth.

Let M be the number of microcracks per unit arca which coalesce with the main crick. Let us idealize these
microcriacks as being initially circular with a uniform radius r. If all the microcracks under consideration were
coplanar, the arei to be cleaved per unit area advanced by the crack would be computed to be

o, = L= Mard., (B4)

For irregular growth this area is magnified by eqn (B3), i.c.

. rAY
o, = (1—.um-,\|:|+(7) :I (BS)

We determine the initial linear density of microcracks a1 lying ahead of the crack (see Section 2) by matching the

arca (B4) to be cleaved, which yields
a , rdY
= 1= (1= Mrr? =
; 1= (1 = Mar )[l+< L>] (B6)

For planar growth, this expression reduces to

a 2
[ = Mrr. (B7)

Next we endeavor to relate M to the volumetric microcrack density. To this end, we assume that the
microcracks in M are thosc which intersect the plane of the crack. Consider all microcracks the center of which
lies at a distance = from such a plane. Furthermore, let 8 denote the angle made by the plane of a microcrack and
the plane of the crack. The intersecting microcracks are those for which =] € rand 0 2 0., = a sin (z/r). Under
the simplifying assumption that the microcracks are randomly oriented, the number of intersecting microcracks
per unit arca with centers in the interval (. >4 dz) is given by

=200 Vds = n—2asin (=
2 T n

H(z)dz =T ")y g (B8)

where N is the number of microcracks per unit volume. Hence, the total number of intersecting microcracks per
unit area is computed to be
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" =2 zi 2
M=| KQ)dr=| —————Nd:=>r. (B9)
Substituting the above expression into eqn (B6) we finally find

rAY
= l«(l—-?.q)[H—(T)] (B10)

where use has been made of the identity ¢ = Nr’. Equation (B10) establishes the sought relation between a/! and
q. For planar growth one has A/L = 0 and eqn (B10) reduces to the particularly simple expression

~a

?:2(]. (BID)



